
PHYSICAL REVIEW E, VOLUME 64, 057601
Dynamics of localized and nonlocalized optical vortex solitons in cubic-quintic nonlinear media
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The nonlinear dynamics of laser beams carrying phase singularity in media with cubic-quintic nonlinearity
changing from self-focusing to self-defocusing is examined. A novel kind of stable nonlocalized optical
vortices appears in such media as well as localized vortex solitons. Linear stability analysis and numerical
simulations show the stability of localized vortices only in the defocusing region.
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The generation, propagation, and interaction of opti
vortices in nonlinear media have been the subject of ex
sive studies. In a self-defocusing media transverse instab
of dark solitary stripe results in the generation of an opti
vortex soliton~OVS!. These solitons are (211)-dimensional
~two ‘‘transverse’’ and a propagation dimension! stationary
beam structures with phase singularity and nonzero ang
momentum. An OVS is a dark spot, i.e., a zero intens
center surrounded by a bright infinite background. Gene
tion, dynamics, and interactions of an OVS exhibit intere
ing features and are the subject of ongoing theoretical
experimental research@1#. Self-focusing media also suppo
localized soliton solutions with phase dislocation surround
by one or many bright rings. To distinguish these solito
structures from OVS’s which have nonzero asymptotes
infinity we term them as localized optical vortex solito
~LOVS!. Recently, it was shown that LOVS are unstab
against symmetry breaking perturbations that lead to
breakup of rings into filaments@2#. These filaments form the
stable bright solitons which, like free Newtonian particle
fly off tangentially to the initial rings conserving total ang
lar momentum@3#.

Either OVS or LOVS can be generated using an in
light beam with an externally superimposed vortex structu
Such beams are known in optics as ‘‘singular beams’’ a
can be readily generated using different techniques, for
stance, computer synthesized holograms and prescr
phase masks@4#. At the singularity the field amplitude is
strictly zero while the phase becomes undetermined. Ang
momentum of the beam is proportional tomN, whereN is
the beam power and integerm defines its topological charge

In this paper we study the dynamics of a self-trapp
singular beam in saturating nonlinear media. We investig
the generation and dynamics of OVS and LOVS. As a mo
nonlinearity we consider the cubic-quintic saturating nonl
earity. This kind of nonlinearity has been widely applied
different domains of research not only in nonlinear optics
also in plasma physics@5# as well as in the context of Bos
superfluid@6#. Taking into account that some of the materia
currently used in optical systems exhibit weak saturation
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fects, their nonlinearity can be approximated with good
curacy by the cubic-quintic model.

Recent measurements show that the polydiacetylenepara-
toluene sulfonate~PTS! exhibits this kind of saturating non
linearities with large cubic-quintic indices@7#. Moreover, the
nonlinear index of refraction becomes negative at the p
while remaining positive in the wings of the beam intens
profile. Being a self-focusing medium, PTS can exhibit
higher intensity features of defocusing media. We show t
due to this peculiarity in such a material it is possible
create both LOVS and OVS.

The dynamics of vortices in nonlinear materials is bas
on the analysis of a (211)-dimensional nonlinear Schro¨-
dinger equation~NSE!

2ik
]E
]z

1D'E12k2
dn~ uEu2!

n0
E50, ~1!

whereE is a slowly varying field envelope,n0 anddn(uEu2)
are, respectively, linear and nonlinear optical indices,D'

5]2/]x21]2/]y2 is the two-dimensional Laplacian describ
ing beam diffraction, andk is a wave vector. In order to
prevent the wave collapse the saturating nonlinearity is
quired. The nonlinear index of refraction~NIR! correspond-
ing to PTS is established to bedn5n2I 1n4I 2, where I
5n0cuEu2/4p is the intensity of the electromagnetic~EM!
radiation. For thel51.6 mm laser radiation the measure
values of second- and fourth-order optical indices are,
spectively, n252.231023 cm2/GW and n4520.8
31023 cm4/GW2. The critical intensity at the peak of th
pulse profile givingdn50 is I 05un2 /n4u52.75 GW/cm2.
Such a self-focusing medium (ddn/dI.0) at higher inten-
sity, I .0.5I 0, becomes defocusing, i.e., NIR changes hav
negative slope. For the peak intensityI m.0.5I 0 the NIR be-
comes defocusing at the peak while remaining focusing
the wings of the laser beam intensity profile. A spatial ri
formation has been observed in PTS due to the nonlinea
sign changes at the beam center when the beam inte
I m('8 GW/cm2) is above the critical one@7#.

Equation~1! can be rewritten in dimensionless form as
©2001 The American Physical Society01-1
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i
]E

]z
1D'E1 f ~ uEu2!E50, ~2!

where the nonlinear functionf (uEu2) is

f ~ uEu2!5uEu22uEu4. ~3!

The following normalizations are used:z/Z, r' /R, andI /I 0
whereZ5l/(2pn2I 0) andR5l/(8p2n0n2I 0).

Let us now consider the soliton solutions carrying vor
ces. Assuming that solutions in polar coordinates are of
form E5A(r )exp(imu1 ibz), Eq. ~2! reduces to an ordi-
nary differential equation

d2A

dr2
1

1

r

dA

dr
2bA2

m2

r 2
A1A32A550, ~4!

whereA is r-dependent amplitude,b is a propagation con
stant, andm(5” 0) is an integer known as the topologic
charge of optical vortex.

Numerically obtained solutions of Eq.~4! with both
boundaries at zero correspond to the LOVS, while the O
has a nonzero constant field backgroundA` . Asymptotic
formulas for LOVS areA(r→0)→r umuc1 and A(r→`)
→c1r 21/2exp(2rAb). OVS solutions have the same a
ymptote forr→0 while for r→` the amplitude has a non
zero valueA(r )5A`1m2/(r 2f 8(A`)). Here,b5 f (A`) and
f 8(A`),0 providedA`

2 .0.5. In dimensional units this con
dition corresponds to the negative slope of NIR (ddn/dI
,0), i.e., in the asymptotic region of the solution@ I (r )
.0.5I 0# the medium is defocusing.

In order to obtain a better understanding we use the a
ogy with a nonconservative motion of a particle. Indeed, E
~4! can be rewritten as

d

dr F S dA

dr D 2

1V~A!G5
m2

r 2

dA2

dr
2

2

r S dA

dr D 2

, ~5!

where the ‘‘effective potential’’ isV(A)52bA21A4/2
2A6/3.

The profile of the potentialV(A) for different values of
the propagation constantb is presented in Fig. 1. Ifb<0,
the potential has a minimum at the pointA50 and maxima

FIG. 1. Potential as a function of the amplitude for differe
values of the propagation constantb.
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at points Amax56@0.51(0.251ubu)1/2#1/2 ~see curvea in
Fig. 1!. For b.0 the potential acquires minima at poin
Amin56@0.52(0.252b)1/2#1/2 ~curve b in Fig. 1!. If b
.3/16 the potential maxima become negative~curvec). For
b.1/4 the lateral maxima vanish~see lined).

The numerically obtained LOVS solutions of Eq.~4! cor-
respond to the ‘‘effective particle’’ beginning its motion a
origin and returning back asymptotically to the initial pos
tion. Such solutions exist for 0,b<3/16 where the potentia
has a shape similar to curveb in Fig. 1. The maximum am-
plitude of LOVS is bounded from above by the conditio
Am,uAmax(3/4)u'0.87. Form51 and for givenb the ‘‘par-
ticle’’ with ‘‘initial velocity’’ A8(0)5c1, in its way back
due to the ‘‘damping,’’ cannot overpass the potential ma
mum at (0,0)-point. However, increasing its initial veloci
the particle can make many oscillations between both po
tial wells before its final asymptotic settlement at origi
such solutions of Eq.~4! correspond to many rings LOVS
For the critical velocity, the effective particle reaches asym
totically the higher maximum of the potential; this solutio
corresponds to the OVS~line h in Fig. 2!. With increase ofb
the central part of the LOVS flattens@8# and widens converg-
ing to the OVS~ line j in Fig. 2!. In principle, it is possible
to create LOVS with a large transverse width. Notice that
bulk part of such flattened LOVS is in the region of defocu
ing NIR. The NSE admits both LOVS and OVS solution
Their coexistence is mainly possible due to the particu
cubic-quintic nonlinearity changing from the self-focusing
the self-defocusing one. The switching from LOVS to OV
and vice versa may be used in information processing.

In other domains of the parameterb LOVS solutions do
not exist while OVS still appears. Indeed, OVS solutions
generated forb<0 corresponding to the potential shap
similar to curvea ~in Fig. 1!. We also found out that the
OVS solutions exist forb.3/16 ~see curvec). In other
words, the ‘‘effective particle’’ cannot overpass but only a
proach asymptotically the lower potential maximum. For fu
ther increases ofb lateral maximum is not high enough t
stop the particle. Forb.1/4 solutions are no more bounde
~see curved). Numerical simulations for a single charg
show that the stable OVS appears forb,3/16 (A`

2 .0.75).
It is usually believed that for the ordinary self-defocusi

FIG. 2. Stationary OVS solution forb50.16 (h). Damping of
the perturbed OVS solution (i ). Stationary LOVS solution forb
50.18 (j ).
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media ‘‘single-charged’’ OVS are topologically stab
whereas vortices with a larger value ofm may decay into the
single-charged one@1#. We would like to emphasize that i
the case of cubic-quintic nonlinearity the same beam
contain regions with not only defocusing but also focus
NIR. Indeed, near its center (r 50) such a novel kind of
OVS is in the focusing regime. Already for small radiusr
amplitude maximum~larger than 0.707) is reached corr
sponding to the defocusing NIR.

The intensity dependent switching from the focusing
defocusing regime influences the stability properties. So
insight can be obtained comparing the behavior of the fi
derivative at the originc1 as a function of the propagatio
parameterb for a single charged OVS~dotted lineo in Fig.
3! and LOVS~full line p similar to the one in Ref.@8#!. The
bulk of the OVS is always in the defocusing regime. Thus
the monotonically decreasing curve deepening of the po
tial near the origin~see Fig. 1! for largerb will be balanced
by a decrease of the ‘‘initial velocity’’c1. The LOVS has the
same behavior on the negative slope of the curvep, i.e., for
b larger than the maximum (b50.145) in the self-
defocusing region. However, on the positive slope ofp(b
,0.145), in the self-focusing region, the effects due to
increase ofb are enhanced by the increase of the ‘‘initi
velocities’’ c1.

In order to perform linear stability analysis of both OV
and LOVS the assumed steady state solution is perturbe

E5$A~r !1@a1~r ,z!exp~ iLu!1a2~r ,z!

3exp~2 iLu!#%exp~ imu1 ibz!, ~6!

wherea6!A and azimuthal indexL51,2,3, . . . .
Substituting such a solution in Eq.~2! and linearizing with

respect to the perturbations the following coupled equati
are obtained:

Q6a61A2~122A2!~a7!* 50, ~7!

where operatorQ6 reads

Q65 i
]

]z
2b1

1

r

]

]r
r

]

]r
2

~m6L !2

r 2
1A2~223A2!.

~8!

FIG. 3. Field derivative at the origin versus propagation co
stantb for OVS ~o! and LOVS (p).
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Growth rateg as a function of the azimuthal indexL for
different values of propagation constantb and for m51 is
given in Fig. 4. Physically,L must be an integer to ensur
azimuthal periodicity, but it appears in the linearized equ
tion as a real parameter@3#.

If the constantb is smaller than the critical value 0.145
LOVS are stable for radial perturbation (L50) but not for
azimuthal perturbations. Forb.0.145 LOVS become stable
~maximal growth rateG50). OVS is stable in the whole
studied range~the corresponding curve coincides with axisb
in Fig. 5!.

Numerical simulations of Eq.~2! performed using the
method of finite differences confirm the stability of an OV
predicted by linear stability analysis. Indeed, the evolution
an OVS stationary state perturbed by Gaussian noise~curvei
in Fig. 2! converges to the stationary state~line h) due to the
generation of radiation spectrum.

In order to obtain a better insight in nonlinear dynamics
LOVS one can analyze integrals of motion of Eq.~2!. For
zero boundary conditions it is easy to demonstrate that
~4! conserves the following integrals of motion: the ‘‘photo
number’’ ~or beam power!

N5E dr�uEu2, ~9!

the Hamiltonian

H5E dr�~ u¹'Eu22uEu4/21uEu6/3!, ~10!

and the angular momentum

-

FIG. 4. Growth rateg as a function of the azimuthal indexL for
propagation constantb50.10 ~curveq), b50.13 ~curves), and
b50.14 ~curveu).

FIG. 5. Forb,0.145 LOVS is unstable~maximal growth rate
G5” 0) but it becomes stable forb.0.145. OVS is stable in the
whole examined range.
1-3
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M5
i

2E dr�FxS E*
]E

]y
2c.c.D2yS E*

]E

]x
2c.c.D G .

~11!

Any initial field distribution has to conserve these integr
during their evolution. Following Zakharovet al. @5#, if the
Hamiltonian is negative there is no diffraction since t
maximum value of the field intensity has az-independent
lower bound uEumax

2 .2uHu/N. Saturating nonlinearity pre
vents the wave collapse to develop. As a consequence
beam is self-trapped. For steady state solution, i.e.E
5E0(x,y)exp(ibz) the Hamiltonian is

H52
1

6E dr�uE0u6,0. ~12!

Therefore the LOVS appears to be in the self-trapped reg
and consequently neither azimuthal nor radial modulat
instability leads to either its diffraction or collapse. Howev
modulation instability usually leads to the beam breaking
multiple filaments. These filaments have to conserve the t
angular momentumuM u5umuN. Since the fusion of fila-
ments is not possible due to the topological reasons, they
eventually spiral about each other or fly off tangentially
the initial ring generating bright solitonic structures fou
for index saturation nonlinearity@3#. Our numerical simula-
tions for b,0.145 give evidence of a quickly developin
instability. In agreement with predictions of linear stabili
analysis (g5G for L52 in Fig. 4! the beam breaks into two
filaments running away tangentially in opposite directio
without spiraling~see Fig. 6 forb50.1). Both filaments like
spatial solitons remain stable@9#.

We hope that our results obtained by linear stabi
analysis can help in resolving a controversy; in Ref.@10#
-
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authors argue that the stability of LOVS forb.0.145@8# is
observed most probably due to an insufficiently long run. W
also simulated, for differentb, the evolution of an initial
stationary state perturbed radially and azimuthally by Gau
ian noise. In order to be sure that some very slow instabi
is not developing we performed numerical simulations un
z56000, i.e., for 150 soliton periodsZo52p/b'40. Our
simulations confirm the result of Ref.@8#. With the increase
of b (0.145,b,3/16) curves for LOVS and OVS~respec-
tively, p and o in Fig. 3! converge suggesting the simila
stability properties.

We established a novel kind of stable OVS in t
focusing–defocusing optical and other media. The linear
bility analysis and numerical simulations confirm the stab
ity of LOVS in the defocusing region and show its breaki
into filaments in a focusing one. We demonstrated the co
istence of LOVS and OVS solutions in such media due to
cubic-quintic nonlinearity switching from the self-focusin
to the self-defocusing regime and vice versa. Such a swi
ing may open for different kinds of materials a new doma
of potential applications for integrated all-optical sign
processing.

FIG. 6. Break of the beam into two filaments running aw
tangentially forz550, z5100, andz5160.
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